
May5th, 2010

Y. Chao

Some Thoughts on High Level Application Demands

Many already addressed in the past two days  Not repeated here

Only questions, No answers

Why XAL?

 Infrastructure built to modern software engineering standard

 Structure & organization – well thought out

 Suite of tools – Versatile, capable, ready to apply

 Extensibility for developers

But this is a view from someone like me (a Sales Rep.?)

Who are the real customers?

 Local code developer (Software, Physicists, ……)

 End user (Operators, Physicists, System experts, ……)

The speed at which the customer is lost can be very fast

 Too many hoops to jump through in developing the application

 Too many hoops in running the application

 Not intuitive enough

 Too time consuming to execute

 Can’t deliver what’s advertised / what’s really needed

 Does not seem indispensable (didn’t make my life any different)

 Process crash / conflicts, erratic behaviour

 Poor documentation / online help

 Poor support

 Wrong outcome!

Negative “word of mouth” is all it takes to quickly kill an actually very good tool.

Second chance rarely happens.

So what will make a tool (XAL) gain traction?

The strength of XAL must not be overshadowed by superficial “nuisances”

(if at all)

To be determined: Core feature, or site-specific extension?

Many high level issues, but enabling provisions may need be made at low level

For Code Developers:

 Software engineers

o Tool is structured up to software engineering standards

o Relatively streamlined development protocols

o Maintainability – How can this be built-in for high level apps?

 Avoid interdependency – Always possible? Always desirable? How to

ensure structure integrity?

 Synchronized upgrade of entire hierarchy – Low to high level, model, file

structure, database, ……

 How about Jython & Matlab scripts?

 Physicists

o Relatively streamlined development protocols

o Scalability

o Efficient algorithm-to-prototype turn-around

 Competent math toolbox

 Competent and “comprehensive” modeling capability

 Competent and “comprehensive” logistic functions (plotting, archiving,…)

 Ability to efficiently implement new devices and processes in the model

 Algorithm testing platform (realistic machine simulation, realistic

diagnostic/control simulation, error representation, ……)

o Efficient machine experiment execution through the tool

 Massive data collection / archiving

 Flexible implementation of multiple control point changes in multiple steps

(in user defined pattern)

 Full event reconstruction offline – further facilitates algorithm testing

o More demand on the model

 Main source of machine model information – most logical place to obtain

physics related to real machine – maybe phased

For End Users:

Two modes of end users (by task, not job title):

 Not always the same objectives and preferences.

 Operator mode

o Deliver beam. Well defined path, minimal distraction

o Absolutely free of bugs or likelihood to crash

o Easy to use

o The faster, the better

 Physicist mode

o Understand machine / Commission new methods. Undefined path,

maximal information, tweak/grope on the fly

o Mainly demand on the high level apps design, but low level robustness is

critical

o Modularity – Ability to swap in/out utility/algorithm, input/output modules

efficiently

o Some of the above for developers applies here.

My (biased) Message

o Keep high level apps in mind while developing low level infrastructure.

o Documentation and support will go a long way.

o Most extreme and possibly competing demands come from physicists as developers

and operators as end users.

o A “killer package”, overcoming the inertia in both groups at the same time, may be

what we have to do.

o

