May5th, 2010

Some Thoughts on High Level Application Demands
Many already addressed in the past two days = Not repeated here

Only questions, No answers
Why XAL?

¢ Infrastructure built to modern software engineering standard
e Structure & organization — well thought out

e Suite of tools — Versatile, capable, ready to apply

e Extensibility for developers

But this is a view from someone like me (a Sales Rep.?)
Who are the real customers?

e Local code developer (Software, Physicists,)
e End user (Operators, Physicists, System experts,)

The speed at which the customer is lost can be very fast

e Too many hoops to jump through in developing the application
e Too many hoops in running the application

e Not intuitive enough

e Too0 time consuming to execute

e Can’t deliver what’s advertised / what’s really needed

e Does not seem indispensable (didn’t make my life any different)
e Process crash / conflicts, erratic behaviour

e Poor documentation / online help

e Poor support

e \Wrong outcome!

Negative “word of mouth” is all it takes to quickly kill an actually very good tool.

Second chance rarely happens.

So what will make a tool (XAL) gain traction?

Y. Chao

The strength of XAL must not be overshadowed by superficial “nuisances”

(if at all)

To be determined: Core feature, or site-specific extension?

Many high level issues, but enabling provisions may need be made at low level

For Code Developers:

e Software engineers
o Tool is structured up to software engineering standards
o Relatively streamlined development protocols
o Maintainability — How can this be built-in for high level apps?

Avoid interdependency — Always possible? Always desirable? How to
ensure structure integrity?

Synchronized upgrade of entire hierarchy — Low to high level, model, file
structure, database,

How about Jython & Matlab scripts?

e Physicists
o Relatively streamlined development protocols
o Scalability
o Efficient algorithm-to-prototype turn-around

Competent math toolbox

Competent and “comprehensive” modeling capability

Competent and “comprehensive” logistic functions (plotting, archiving,...)
Ability to efficiently implement new devices and processes in the model
Algorithm testing platform (realistic machine simulation, realistic
diagnostic/control simulation, error representation,)

o Efficient machine experiment execution through the tool

Massive data collection / archiving

Flexible implementation of multiple control point changes in multiple steps
(in user defined pattern)

Full event reconstruction offline — further facilitates algorithm testing

o More demand on the model

Main source of machine model information — most logical place to obtain
physics related to real machine — maybe phased

For End Users:

Two modes of end users (by task, not job title):

Not always the same objectives and preferences.

e Operator mode
o Deliver beam. Well defined path, minimal distraction
o Absolutely free of bugs or likelihood to crash
o Easy to use
o The faster, the better
e Physicist mode
o Understand machine / Commission new methods. Undefined path,
maximal information, tweak/grope on the fly
o Mainly demand on the high level apps design, but low level robustness is
critical
o Modularity — Ability to swap in/out utility/algorithm, input/output modules
efficiently
o Some of the above for developers applies here.

My (biased) Message

o Keep high level apps in mind while developing low level infrastructure.

o Documentation and support will go a long way.

o Most extreme and possibly competing demands come from physicists as developers
and operators as end users.

o A “killer package”, overcoming the inertia in both groups at the same time, may be
what we have to do.

